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ABSTRACT
In wireless network planning, much effort is spent on the im-
provement of the network and transport layer – especially
for Mobile Ad Hoc Networks. Although in principle real-
world measurements are necessary for this, their setup is
often too complex and costly. Hence good and reliable sim-
ulation tools are needed.

In this work we present a new physical layer simulation al-
gorithm based on the extension and adaptation of recent
techniques for global illumination simulation. By combin-
ing and improving these highly efficient algorithms from the
field of Computer Graphics, it is possible to build a fast and
flexible utility to be used for wireless network simulation.
Instead of the wave nature of EM radiation we rather use
the particle nature of waves to compute a discrete sampling
of the volumetric electromagnetic field by tracing stochas-
tically generated photon paths through the scene. This so
called Photon Path Map is then used to estimate the field
density at any point in space and also provides local in-
formation about the delay spread. The algorithm can be
applied to three dimensional indoor as well as outdoor sce-
narios without any changes and it scales only logarithmically
with the growing complexity of the underlying scene geom-
etry.

1. INTRODUCTION
In this work we introduce an algorithm to efficiently and
accurately simulate the physical layer of microwave wireless
networks which is applicable both to GSM mobile phone
networks and 802.11 style wireless local area networks. Es-
pecially in the case of Mobile Ad Hoc Networks (MANET)
and Wireless Mesh Networks a robust simulation in the de-
velopment phase is important. This is partly due to the fact
that it is hard to acquire enough people and mobile stations
for test runs of the algorithms. These simulations can of
course also be used for antenna placement with maximum
availability of deployed stationary nodes.

A typical network simulator emulates all layers, including
the link or physical layer. Especially this layer contributes
a lot to the computation complexity, since it is used in each
query on the network medium. Thus in this work we will
present an efficient method to simulate the physical layer of
wireless networks.

Our algorithm efficiently computes accurate simulations of
radio waves propagated through three dimensional indoor or
outdoor scenes. It is derived from algorithms known from
Computer Graphics, where the Global Illumination in 3D
scenes is estimated for visualization purposes. This is a sim-
ilar problem setting as the radio wave propagation problem,
although in a different frequency band of the electromag-
netic spectrum.

By approaching the problem of wave propagation from the
viewpoint of Computer Graphics it is possible to develop a
very general, yet accurate and fast algorithm. The only as-
sumption regarding the scene geometry is that it is defined
by a set of polygons. So any indoor and outdoor scenario
is possible. As a consequence complex scenes using build-
ings with multiple stories are as easy to process, as scenes
containing only one floor or simple geometry. Also we do
not put any restrictions on the transmitter or the possible
frequency range.

It is possible to incorporate our approach efficiently into a
network packet simulator. This is done by computing a set
of simulations in advance and doing interpolated lookups
during the simulation of the network traffic.

In the following we will present related work done in this
area. Then we will explain our new approach, some experi-
mental results and finally our conclusion.

2. RELATED WORK
There has been done quite some previous work in both the
areas of Radio Wave Propagation and Global Illumination.
Both share similar roots and goals and this section will show
on which work our new technique is based.

2.1 Wave Propagation
There are different possible approaches to wave propagation
calculations. All these approaches aim at predicting the ad-
vancing of a wavefront through a scene. Upon collision with
boundaries of different media the wavefront can be scattered,
reflected, diffracted or refracted. Also part of the energy will



be absorbed and transformed into heat or infrared radiation.
These effects will have to be taken into account to a certain
degree, in order to achieve a correct solution. Here we will
concentrate on algorithms that are mostly based on geomet-
rical optics, i.e., methods that trace elementary electromag-
netic waves along rays or straight line segments. Although
there are algorithms known in Computer Graphics that com-
pute wave propagation as the propagation of complex wave
coefficients in a grid [16], this proved to be not efficient for
small wavelengths.

2.1.1 Empirical Models
First one has to distinguish between empirical and deter-
ministic approaches. The empirical methods use a set of
parameters to model a function that as closely as possible
resembles the pathloss of a signal as described by the ad-
vancing wavefront. Popular empirical methods include the
Walfisch-Ikegami-Model (WI-Model) [22]. The WI-Model
takes into account multiple diffraction on rooftops and is
as such almost only suitable for outdoor scenarios in urban
microcells. In these scenarios rooftop to street diffraction
is predominant. But waveguiding effects by buildings can-
not be modelled very well. So indoor scenarios and outdoor
propagation paths that rely on reflection are not well mod-
elled by this approach.

Furthermore one needs to supply well calibrated parame-
ters to the algorithm to get sufficiently good results. On
the other hand, empirical methods usually require very lit-
tle computation time, since they abstract from the detailed
scene geometry.

In comparison, our algorithm models reflections very well
and only relies on the geometry as input.

2.1.2 Deterministic Models
Deterministic algorithms use ray tracing techniques to cal-
culate propagation paths. In the wireless network world
we distinguish between ray tracing and ray launching tech-
niques. The same techniques are known in computer graph-
ics, where they are also called ray tracing and light tracing,
depending on the ray direction [7].

In [11] it was shown that adaptive space subdivision leads to
very efficient ray-tracing results compared to uniform sub-
division. By using kd-trees [4] the complexity of the 3D or
2D ray-object intersection test can be reduced to O(log n).
This makes the use of raytracing algorithms efficient and
also allows them to process large amounts of geometry. We
use this technique to accelerate both the ray intersection
and the search for the nearest diffracting edge.

In [24] a 2D algorithm is proposed with several accelerations.
For a given transmitter and receiver it shoots only rays in an
approximated Fresnel zone. Since this approach needs to do
a raytracing step for each receiver pixel, a caching heuristic
is employed to avoid recalculation of rays for neighboring
pixels. The need for caching is eliminated in our approach by
sampling only those areas which receive energy. There is no
need anymore to evaluate the ray-tracing for each receiving
voxel.

A 3D ray launching algorithm working on a uniform grid was

developed by [19]. Here the rays are propagated in discrete
steps on the grid and the signal is reflected, transmitted or
diffracted when certain voxels are hit. The accuracy of the
ray propagation thus directly depends on the grid resolution.
This is not the case with our algorithm, since the Photon
Path Map is computed without a discrete grid as its base.

Another approach is the dominant path prediction model
which can be adapted to work in indoor [23] and outdoor
[21] scenarios. Dominant propagation paths are determined
in a non-trivial way by using neural networks [25], [26]. The
loss along these paths is then evaluated using some empirical
methods. For the indoor case waveguiding factors are taken
into account, since reflection on walls is a major factor for
these scenarios. The advantage of this approach is speed and
relatively high accuracy. But since only dominant paths are
used it is unclear if the solution is somehow biased, e.g. if
it has the tendency to find local extrema. Also one has to
change the algorithm to switch between indoor and outdoor
scenarios. This is not necessary with our algorithm, which
can even do scenes with both out- and indoor parts.

2.2 Global Illumination
Our algorithm is an extension of the Photon Map [12] which
in turn can be seen as a variant of the light tracing algo-
rithm [8]. All of them can be called Global Illumination
algorithms. In the field of Global Illumination one com-
putes the distribution of light on the object surfaces in a
three dimensional scene. This distribution takes into ac-
count all possible, global interactions of light with objects in
the scene. This way one can estimate light and shadows and
render visually convincing images.

Considering that visible light and microwave radiation are
essentially the same phenomenon, only at different frequen-
cies, it is only natural to transfer some of the Global Illumi-
nation algorithms to the Radio Wave Propagation setup.

Some differences have to be noted, though. First, microwaves
have a much longer wavelength than visible light and so the
effect of wave diffraction is relevant, whereas for visible light
this can almost always be neglected. Second, in Global Illu-
mination most of the algorithms deal with the appearance
of object surfaces, but for Radio Wave Propagation we need
to deal with field densities in a volume.

2.2.1 The Photon Map
The Photon Map was introduced by [12] for global illumi-
nation purposes. It is a spatial data structure which stores
incoming radiance on 2D surfaces. Radiance is a radiomet-
ric quantity that describes the amount of energy arriving at
the surface of an object. The reflected radiance describes the
amount of energy that is reflected from this surface. This is
what we can perceive as the brightness of an object.

The advantage of the Photon Map is that the radiance can
be calculated with arbitrary precision as a preprocessing
step. The final energy density can be computed with some
user-defined precision, allowing for efficient computation of
images.

The Photon Map is computed using a two step algorithm.
In a first step, the radiation is propagated in discrete quanti-



ties called photons into the scene. Each collision of a photon
with objects in the scene is stored and as a result a radiance
representation is produced. In the second step, this repre-
sentation can be evaluated by gathering the radiance, i.e.,
the energy density is estimated at every surface point in
the scene necessary for the final image. Both steps will be
detailed in the following paragraphs.

Shooting
The goal of the Photon Map is to compute the radiance on
object surfaces. Therefore we trace a number of rays from
the light- or radiation-source through the scene. This is
achieved by using a Monte Carlo style path tracer as widely
used in the Global Illumination context. Each collision of
a ray with the scene can spawn a new ray. Hence we get a
sequence of rays that is called a path and which can be ter-
minated by the Russian Roulette technique [3]. This guar-
antees that the path generation is unbiased, in contrast to a
fixed depth cutoff. We then obtain a very simple algorithm:

For each light source do

Shoot n photons in random directions

If photon hits surface decide randomly:

a) Absorb photon

b) Store and reflect /

transmit photon

The Russian Roulette also ensures that an arbitrary number
of interactions with the scene can happen, only bounded by
the material properties of the objects in the scene. Most
techniques used for Radio Wave Propagation allow only for
a fixed, but user definable number of reflections or transmis-
sions.

Additionally a linear attenuation term can be applied to the
photon path, depending on its length to model atmospheric
attenuation for different weather conditions. For this no
Monte Carlo approach is used, since the volumetric atten-
uation would lead to a much higher variance in the final
solution. But experiments have shown that this simple lin-
ear attenuation leads to good results.

Since the Photon Map uses randomly sampled paths orig-
inating from the radiation source and since the Russian
Roulette favors paths along highly reflective objects, only
paths that carry a lot of energy are computed. This is a
very important property of the light tracing algorithm and
is of particular usefulness in the context of Radio Wave prop-
agation. In previous works, one had to eliminate paths with
little or no energy and trace only those paths that are dom-
inant in the scene [26], or one had to cache rays to avoid
duplicate computation [24]. With the Photon Map we get
this behavior as an inherent property of the algorithm, while
keeping it simple.

Kernel Density Estimator
As a result of the photon map we have a set of points in
space that mark interactions of photons with objects. The
more photons there are per surface area, the more energy
this surface has received, and the brighter it will appear.
This way we can estimate the energy density represented by
the Photon Map very easily and also in a smooth manner.

To get an idea of how bright a surface point should appear,
we need an estimator of the photon density. The standard
way to do this in the Photon Map method is to use some
sort of kernel density estimator (KDE). In the multivariate
case of dimensionality d, the KDE is defined as:

f̂ =
1

nhd

nX
i=1

K

„
‖xi − x‖

h

«
(1)

The bandwidth h of the estimator determines the smooth-
ness of the result and also the bias. However the estimator
is consistent as the bias vanishes with an increasing number
n of samples and a decreasing bandwidth h. The function K
is a filter kernel and influences the smoothness of the solu-
tion. x denotes the current position to be rendered, and the
xi is the position of the current sample, i.e., of the current
photon.

In practice it turns out that a cubic filter kernel works best
for the Photon Path Map as it will produce a smooth es-
timation of the field density, as compared to a simple box
filter for example.

Gathering
The second part of the Photon Map algorithm consists of
sampling a set of precomputed photons for each surface
point to be illuminated. Over these samples we can build a
KDE to get an estimated value for the incoming radiance.
The sample set can be efficiently gathered by taking the
k-nearest neighbors for the surface point. This is only an
approximation, but works reasonably well. As we will show
later we can get an exact KDE for the Photon Path Map.
In the classical Photon Map approach the radiance estimate
still would have to be multiplied by some reflection function,
but for the Photon Path Map we can take the energy density
as is.

3. THE PHOTON PATH MAP
Our new algorithm extends the idea of the Photon Map to
allow not only for the computation of surface radiance but
also to get an estimated field strength for every point in
space. Therefore we do not only store points of interaction
in the map, but also the paths that connect these points as
a photon travels through the scene. As a result the Photon
Path Map represents a discrete sampling of paths following
the advancing wavefront.

Figure 1(a) shows a Path Map for an indoor data set. Here
the map is only sparsely sampled for clarity purposes and
also rays that leave the scene are left out to make the image
more simple.

3.1 Path Generation
The photon paths are built in much the same way as in the
classic Photon Map approach. We use a standard photon
mapping raytracer that is also used to generate illuminated
images of three dimensional scenes. The input is given as
a set of triangle meshes, surface materials per triangle and
transmitters. The scene geometry is stored in a balanced
kd-tree to accelerate the ray intersection tests. The output



(a) (b)

Figure 1: (a) A sparsely sampled Photon Path Map in an indoor scenario. (b) The same map, more densely
sampled and with the field strength coded by using grey scales. In the black areas the field strength is high,
whereas transparent or white areas have low field strength. Both images represent the top view of a 3D
simulation.

of the algorithm is a volume image with the simulated field
strengths per voxel.

Basically the program just runs the algorithm from Section
2.2.1 to generate photon paths, which are stored as linked
lists. We will see in the next section that for this setting,
since we need to take diffraction into account, we have to
augment the algorithm slightly.

3.2 Ray Bending
The raytracer works as a Monte Carlo path-tracer and re-
flects, transmits and diffracts the rays as necessary. The
diffraction of the rays is a step that is usually not needed for
image synthesis. But for the simulation of radiation in the
microwave spectrum this effect becomes important. Since
we use a Monte Carlo approach for the sampling of the
paths, we cannot use the standard Geometric or Uniform
Theory of Diffraction (GTD and UTD) [13], [14]. But we
can use the Heisenberg Uncertainty Ray Bending (HURB)
by [10], which allows to sample the diffracted field of a ray
incident on a diffracting edge embedded in a Monte Carlo
path tracing process.

To find out possible diffracting edges, we store all convex
edges in the scene in a kd-tree for fast lookups and decide
if the current ray is bent around an edge or should be re-
flected or transmitted by an object. To be able to identify
the diffracting edges, the input geometry should consist of
manifold meshes, which can be easily guaranteed with com-
mon map data.

This leads to the following algorithm:

PreProcess:

Find all convex edges and store

them in a kd-tree

traceHURB:

1. For a random number of steps

2. Find nearest intersection w/object

3. Find nearest diffraction edge

4. Depending on order of event

4a. Compute reflected ray, goto 1

4b. Compute diffracted ray, goto 1

5. Store path element

This algorithm can then be used in the standard Photon
Map algorithm. The search for possible diffracting edges
can of course be restricted to the first Fresnel zones, which
depend on the simulated wavelength.

3.3 Field Strength Estimation
After the ray shooting we have a set of ray path segments.
Now we have to determine the path density for each voxel
in the output image. The kernel density estimator approach
of the Photon Map requires us to find the k nearest photons
to a certain point. This is relatively costly when performed
on the uniform grid of the volume image. Also a k-nearest
neighbor search is biased since for performance reasons the
search domain has to be pruned so that only an approximate
nearest neighbor search can be performed.

Instead of this we do an explicit calculation of the KDE
by rasterizing the weighting function of the paths directly.
The weighting function for a photon path segment produced
by the kernel is similar to a distance function. For the 2D
case figure 2(a) illustrates this. Because the rendering of
the end caps can be slow, we can optionally reduce this
to a cylindric shape as seen in Figure 2(b). This will add
a small bias to the estimator but will allow us to apply a
fast plotting algorithm for this cylindric weighting function.
The idea is now to draw a set of parallel lines that produce
a dense sampling of the cylindric shape.

The projection of the cylinder caps with an axis-aligned
plane (e.g. X-Y) gives us an ellipse as shown in Figure
2(b). It is important to choose the plane so that it is as
perpendicular to the cylinder axis as possible. Otherwise
the intersection ellipse might degenerate.

We can then draw the cylinder by an incremental rasteri-
zation of lines that are offset according to this ellipse. The
ellipse itself is defined by a center c and two axes u and v.
The major axis u is always of length r, which is the cylinder
radius. The minor axis is |v| = r · sin α, where α is the angle
between the cylinder caps and the major plane. The offset
in the major plane is then given by the ellipse equation:

〈u|(q − c)〉2 + 〈v|(q − c)〉2 ≤ 1, (2)
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Figure 2: (a) The falloff weighting function for a
path segment (white), and the caps applied to it
(black) for efficient rendering. (b) The cylinder end
cap projects into an ellipse. This can be used to
produce a very fast solid cylinder plotting algorithm.

where q is the current voxel. Since the cylinder base is gen-
erally inclined with respect to the major plane, we have
to shift the lines perpendicular to the major plane. This
displacement can then also be easily calculated by solving
the plane equation for example for the Z-coordinate. This
method does however produce rasterization artifacts due to
the discrete nature of the line drawing algorithm. Therefore
all the lines should start in an axis aligned base plane which
is parallel to the major plane, but their drawing is delayed
until they reach the cylinder cap. This produces a fast and
solid rendering of the cylinder.

The resulting volume image represents for each voxel an ap-
proximated stationary field strength. Small scale fadings
can be modelled on top of this stationary field. One solu-
tion is to use a Ricean Fading model as proposed in [17].
Also since we have computed a set of propagation paths in
the Photon Path Map we can use the paths to compute an
estimated delay spread, which will be detailed in the next
section.

3.4 Delay spread estimation
One further advantage of our approach is that it allows the
estimation of channel delay spread due to multi-path prop-
agation. Quite a few previous works have developed models
and procedures to measure and simulate the delay spread
of channels [2], [20], [18]. The knowledge of these particu-
lar channel characteristics becomes ever more important for
OFDM based schemes, as for example in 802.11 networks.

In contrast to the previous works, our algorithm computes a

Figure 3: The standard deviation of the signal delay
as a scalar value per voxel.

sampling of the most important paths, where we can gener-
ate a delay spread histogram for some point in space. Alter-
natively we compute the standard deviation of delay spread
over the complete volume, which can then later be used to
compute a distribution of signal delays in a simulator. Fig-
ure 3 shows an image of the standard deviation in delay
spread for a small indoor scenario. Values in this image
range from around 10 ns (bright areas) to 100 ns, which is
in accordance with figures measured in [18] for indoor sce-
narios.

The results from Figure 4 confirms this observation, where
we have one delay profile made from a position with line of
sight to the sender, and one profile without line of sight, in a
corridor. It is well known that corridors in indoor scenarios
have strong multipath propagation profiles and thus a large
and highly varying delay spread spectrum.

3.5 Small scale fading and interference
Small scale fading happens as a result to Doppler shift gen-
erated by moving objects in the scene. This phenomenon is
not explicitly modelled by the Photon Path Map, but can be
modelled by additional fading models, which depend on the
underlying movement models of the simulation. This has
been described in more detail by [17]. In particular small
scale fadings can be induced by any moving object in the
scene, which proves to be very difficult to model. For ex-
ample in indoor scenarios one of the main sources for small
scale fading will be the movement of people walking around.

As could be seen before, the Photon Path Map models the
transmission of only one sender. In theory we can also model
the transmissions of many senders, but this is not necessary
in the context of the simulation of a MANET. The interfer-
ence of multiple senders is being detected by the simulator
(in our case ns-2), which simply does a lookup in the differ-
ent Photon Path Maps for the two interfering senders. How
this is all implemented efficiently will be described in the
next section.

3.6 Interface with the network simulator
For the simulation of the MANET we use the ns-2 simulation
package [9]. In a pre-processing step we compute for a subset
of each possible transmitter position one Photon Path Map.
For a typical indoor scenario of a medium sized building
about 200 positions are usually sufficient. These maps can
be computed on a cluster or grid network in a matter of
minutes. In our experiments a grid engine of 49 Opteron
computers took approximately 5 to 10 minutes to compute
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Figure 4: This figure shows the delay spread in the first indoor scenario. (a) Delay spread statistics for a
position in line of sight to the sender. (b) Delay spread for a position without line of sight on the corridor.
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the Photon Path Map layer model the reality much
better than with the Two Ray Ground approach,
which is default in ns-2. The error bars show the
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all positions, depending on the grid workload.

These maps are then used to do interpolated lookups of
the field strength. The ns-2 generates requests for the field
strength concerning a certain sender and receiver position.
First we determine the k-nearest Photon Path Maps consid-
ering the transmitter position and visibility, as defined by
obstacles in the scene. The selected maps are weighted by
distance and the weighting coefficient is then used to do an
interpolated lookup at the receiver position.

This can be done extremely fast and results in an approxi-
mated signal strength at the receiver position. This proce-
dure results in a much more realistic result than the current
two-ray-ground physical layer approach in ns-2 while it is
only 1.5 to 1.7 times slower. Previous approaches using ray-

Figure 6: An excerpt of the volume image as it is
produced by the Photon Path Map algorithm for
the Munich dataset.

tracing in the ns-2 were up to 100 times slower than with a
simple propagation model [6]. As can be seen in Figure 5 us-
ing our physical layer model greatly improves on the overall
ns-2 simulation run. With the simple physical model too low
delay values are computed, and the network performance in
the simulator is completely unrealistic.

4. EXPERIMENTAL RESULTS
We have run the algorithm mainly on three different sce-
narios for which real measurement data has been available.
The first scene is the Munich dataset from the COST 231
project [5], which was originally sampled by Mannesmann
Mobilfunk GmbH, Germany. This scene describes a micro-
cell outdoor scenario of a few square-kilometers in size. Fig-
ure 6 depicts the volume image produced by our simula-
tion and Figure 9 shows the measured and simulated field
strengths as well as the error made in a plot.

One can see that spatially fast fluctuating reception, pos-
sibly due to shadowed areas, is difficult to model when far



from the transmitter. This is partly due to the fact that
at this distance, the Photon Path Map is less densely sam-
pled. Therefore some paths might be missed that contribute
to the field strength at this point. Also quite a lot of the
small scale changes in the measured field are probably due
to small objects not represented in the geometry, or general
dynamic scene effects. So the simulations do depend to some
extend on accurate geometry data. One can not expect that
with a rough model of the scene perfect simulations can be
achieved. But even with missing details, like cars, trees or
roof shape information, simulations of good quality can be
computed.

As said before, one can specify different materials for each
part of the buildings. If material properties like reflectance
and translucency are not known, they can be computed by
estimating them via some measurements in the scene and
optimizing for these parameters in the simulation.

The other scenes are indoor scenarios, showing the rooms of
two institutes. The first dataset has been provided by [1].
The field strength for this dataset has been sampled by us-
ing standard notebook computers and an architectural map
of the building. Results are plotted in Figure 8(a) and the
corresponding volume image is shown in Figure 7(a). The
second indoor dataset has been provided [15]. The simula-
tion results for this scenario can be seen in Figure 8(b) and
the volume image in Figure 7(b).

The time complexity of the shooting step of the algorithm
depends on the number of faces, the number of photons to
be shot and the average length of a path. It scales O(log nf )
with the number of faces nf , since a ray-triangle intersection
and also a ray-diffraction edge detection in a kd-tree each
take as long as a single search in that tree. The tree itself
is built in a balanced way. The depth of the paths d can
be considered constant, depending on the material values or
an optional user defined cutoff. The number of photons np

is also constant and user defined. So the shooting step of
the algorithm takes O(dnp log nf ) time, and as thus scales
very well with large scenes that contain tens of thousands
of triangles, although a higher number of photons is needed
for scenes covering a larger area.

The following table shows the simulation results for the dif-
ferent scenes, including the mean error and the standard de-
viation from the measurements. All results were computed
on a 2.2 GHz PC with 2 GByte of RAM.

Scene Accuracy Time Mean Std.
error dev.

Munich ∼10 m 6m 53s 3.62 dB 4.68 dB
Indoor 1 ∼0.2m 12.7s 5.1 dB 6.6 dB
Indoor 2 ∼0.2m 15.8s 4.5 dB 5.6 dB

A comparison with other algorithms is somewhat difficult,
due to the fact that there are few scenes with measurements
publicly available which are used by most published works.
Also several papers do not mention the used hardware, run-
time, target complexity or an error measure.

In [19] a map of the city of Stuttgart is used, being 4km2

in size. This is comparable to the 8km2 of the Munich

scene. For the Stuttgart data [19] give a preprocessing time
of 31 minutes and a simulation time of 2 minutes for a small
0.64km2 subset with 5 m resolution. They do not mention
the hardware used, but considering the improvements that
have been made in this area, and due to the fact that they
only processed a small subset of the map, it makes sense to
assume that for a scenario of 8km2 their algorithm would
still take between several minutes to half an hour on today’s
machines.

A direct comparison can be made with the Dominant Path
Prediction algorithm for outdoor scenarios by [21]. Here,
the Munich dataset has been used. In their paper they give
the following values:

Method Accuracy Time Mean Std.
error dev.

DPP 10 m ∼36s 3.7 dB 6.4 dB

The mean error and the standard deviation is slightly worse
compared to our algorithm. The performance gain of DPP
can be explained due to the fact that it is a hybrid algorithm.
It uses empirical path loss models as described in [26]. These
models require very little computation time.

The advantage of our algorithm however is that it is much
simpler, but also as accurate as the Dominant Path Predic-
tion model. Furthermore it handles 3D scenes very well and
processes almost arbitrary geometry in an efficient manner
and produces extra data, like the delay spread information
as described before. Since we showed that our approach can
be done completely as a preprocessing step, the runtime will
not affect a simulation in the ns-2.

5. CONCLUSION
In this work we have presented a wave propagation algo-
rithm with many advantages over existing algorithms. It is
physically based and thus can be compared with real life
measurements, an improvement of the scenario detail will
result in a higher accuracy of the simulation. Standard tri-
angular meshes can be used as input. These meshes can
be easily produced for example from CAD-data for indoor
scenarios or map data for outdoor scenarios. The algorithm
handles indoor and outdoor cases equally well and does not
need to be adapted to either case. It is even possible to
use mixed scenarios, where urban microcell propagation is
combined with, e.g., the reception of a mobile phone in a
building.

Since the algorithm uses a Monte Carlo approach for the
sampling of the ray-space, the target resolution of the algo-
rithm has no great impact on the running time compared to
other algorithms working on uniform grids. Also the final
grid resolution does not reduce the accuracy of the raytrac-
ing step, as is the case with the approach by [19]. It only
influences the accuracy of the kernel density estimator. The
estimator only operates on voxels that contain energy, hence
no time is spent on regions that never receive any signal.
Furthermore with our algorithm one gets an increasingly
more correct solution when increasing the number of rays.
For a fast estimation of the field strength, a few thousand
rays will do. For more accurate results one can spend as
many time as needed on the ray shooting.



(a) (b)

Figure 7: Volume renderings for (a) the first indoor dataset and (b) the second indoor dataset.
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Figure 8: Experimental results for (a) the first indoor dataset and (b) the second indoor dataset. The dotted
line shows the error, the dashed one shows the simulation and the solid curve denotes the measurements.
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Figure 9: Simulation results for the Munich city center dataset. The lower two curves show the measured
and simulated pathloss in dB and the curve at the top shows the error made in the simulation.



Another important advantage of this algorithm is that it
produces a ray path-structure from which we derive infor-
mation like the delay spread spectrum and the standard de-
viation of the delay spread. The paths include all possi-
ble combinations of reflection, transmission and diffraction.
The path length is arbitrary and determined by the Russian
Roulette procedure, which is unbiased. A biased manual
recursion cutoff can be introduced to get faster but less ac-
curate results.
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[25] G. Wölfle and F. Landstorfer. Field strength
prediction in indoor environments with neural
networks. In Vehicular Technology Conference,
volume 1, pages 82–86. IEEE, 1997.
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